Filtering with clouds

نویسندگان

  • Sébastien Destercke
  • Olivier Strauss
چکیده

Selecting a particular kernel to filter a given digital signal can be a difficult task. One solution to solve this difficulty is to filter with multiple kernels. However, this solution can be computationally costly. Using the fact that most kernels used for low-pass signal filtering can be assimilated to probability distributions (or linear combinations of probability distributions), we propose to model sets of kernels by convex sets of probabilities. In particular, we use specific representations that allow us to perform a robustness analysis without added computational costs. The result of this analysis is an interval-valued filtered signal. Among such representations are possibility distributions, from which have been defined maxitive kernels. However, one drawback of maxitive kernels is their limited expressiveness. In this paper, we extend this approach by considering another representation of convex sets of probabilities, namely clouds, from which we define cloudy kernels. We show that cloudy kernels are able to represent sets of kernels whose bandwidth is upper and lower bounded, and can therefore be used as a good trade-off between the classical and the maxitive approach, avoiding some of their respective shortcomings without making computations prohibitive. Finally, the benefits of using cloudy filters is demonstrated through some experiments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Detection of Power-Transmission Lines in Point Clouds Using Random Forest Method

Inspection of power transmission lines using classic experts based methods suffers from disadvantages such as highel level of time and money consumption. Advent of UAVs and their application in aerial data gathering help to decrease the time and cost promenantly. The purpose of this research is to present an efficient automated method for inspection of power transmission lines based on point c...

متن کامل

Filtering of Airborne Laser Scanner Data Based on Segmented Point Clouds

The extraction of points on the bare Earth from point clouds acquired by airborne laser scanning is the most time consuming and expensive part in the production of digital elevation models with laser scanning. Current algorithms for filtering point clouds assume the Earth’s surface to be continuous in all directions. This assumption leads to smoothed terrain representations in case of height di...

متن کامل

Streaming Progressive TIN Densification Filter for Airborne LiDAR Point Clouds Using Multi-Core Architectures

As one of the key steps in the processing of airborne light detection and ranging (LiDAR) data, filtering often consumes a huge amount of time and physical memory. Conventional sequential algorithms are often inefficient in filtering massive point clouds, due to their huge computational cost and Input/Output (I/O) bottlenecks. The progressive TIN (Triangulated Irregular Network) densification (...

متن کامل

An Uneven Illumination Correction Algorithm for Optical Remote Sensing Images Covered with Thin Clouds

The uneven illumination phenomenon caused by thin clouds will reduce the quality of remote sensing images, and bring adverse effects to the image interpretation. To remove the effect of thin clouds on images, an uneven illumination correction can be applied. In this paper, an effective uneven illumination correction algorithm is proposed to remove the effect of thin clouds and to restore the gr...

متن کامل

Filtering Airborne Lidar Data by an Improved Morphological Method Based on Multi-gradient Analysis

The technology of airborne Light Detection And Ranging (LIDAR) is capable of acquiring dense and accurate 3D geospatial data. Although many related efforts have been made by a lot of researchers in the last few years, LIDAR data filtering is still a challenging task, especially for area with high relief or hybrid geographic features. In order to address the bare-ground extraction from LIDAR poi...

متن کامل

Low Rank Matrix Approximation for Geometry Filtering

Wepropose a robust, anisotropic normal estimationmethod for both point clouds and meshes using a low rank matrix approximation algorithm. First, we compute a local feature descriptor for each point and find similar, non-local neighbors that we organize into a matrix. We then show that a low rank matrix approximation algorithm can robustly estimate normals for both point clouds and meshes. Furth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Soft Comput.

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2012